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We give a theoretical, geometric solution of the inverse fractal problem for a large
class of two-dimensional attractors which we call polyhulled disjoint (PHD) attrac-
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1018 A. Deliu, J. Geronimo and R. Shonkwiler

tors. These are attractors of iterated function systems (IFS) with affine maps and
range over a wide spectrum of shapes, both abstract and natural. Encoding the
objects of a two-dimensional image in terms of their IFS results in enormous data
compression.

Given a PHD attractor we present an algorithm to find its IFS code by performing
a geometric analysis based on the extreme points theorem. We introduce an edge
detection device, the springbar function, to extract the affine orbits entangled inside
the attractor and then use the elementary properties of these orbits to determine the
mappings which generated them.

Our solution is amenable to numerical implementation.

1. Introduction

We use the term fractal in the sense of Barnsley (1988), as a set generated by an
iterated function system (IFS). An iterated function system W is a finite set of
contractive affine maps wi : X → X, i = 1, 2, . . . , N , defined on a compact metric
space X to itself. Associated with an IFS is a unique subset A = A(W) of X, the
attractor of W, which is characterized by the tiling property (Hutchinson 1981),

A =
N⋃
i=1

wi(A). (1.1)

The sets wi(A) are the tiles of A (relative to W) and the maps wi their generators.
Letting CA denote the convex hull of A, the first level tiles or hull tiles of A relative
to W are the sets wi(CA), i = 1, . . . , N . The existence of A can be demonstrated
by realizing it as the fixed point under the set map, W (B) =

⋃N
i=1wi(B), which is

a contraction in the space of non-empty compact subsets of X under the Hausdorff
metric (Barnsley 1988). Our principal interest here is with two-dimensional attractors
and consequently X will be taken as the unit square of R2. By appropriate scaling,
an arbitrary two-dimensional attractor can be realized as a subset of this square.
Hence in what follows, each map w is of the form w = W + b, where W is a 2 × 2
matrix and b is a two-dimensional vector. The constant map, wx = b for all x, can
be used only to insert individual points at arbitrary places in the attractor. We will
not consider such attractors. Similarly, we will not consider attractors resulting from
iterated functions systems containing singular maps. Most, if not all, of our results
continue to hold for non-constant singular maps but a great many new cases result
from their consideration which we leave for the reader.

We also consider one-dimensional attractors. An IFS of one-dimensional maps,
ŵ(x) = sx + b, may be embedded in the class of two-dimensional iterated function
systems in many ways, for example by setting

w(x) =
(
s 0
0 s

)(
x
y

)
+
(
b
b

)
.

The diagonal of the square of the resulting two-dimensional attractor is a root two
enlarged replica of the original one-dimensional attractor.

Attractors may be graphically rendered to produce wonderfully detailed
monochrome images on a computer screen or the printed page. The fractal shrub

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


On the inverse fractal problem 1019

of figure 7 is such an example. By adjusting the generating maps of an IFS, the
resulting image may be controlled and can have an appearance ranging from clas-
sical geometric objects, to natural objects, to highly abstract objects with fractal
dimension not equal to the topological dimension (Mandelbrot 1982). The forward
problem of fractal geometry is that of rendering the attractor of a given IFS.

Conversely, the inverse problem of fractal geometry is that of determining the IFS
maps which produce a given attractor. The problem has been previously studied,
frequently in the more general context of invariant measures on fractals (Abenda &
Turchetti 1989; Barnsley et al. 1985; Cabrelli et al. 1992a, b; Diaconis & Shahshahani
1986; Handy & Mantica 1990; Mantica & Sloan 1989; Vrscay & Roehrig 1989; Vrscay
1990, 1991a, b; Bessis & Demko 1990; Stricthartz 1993). Most of these papers treat
the one-dimensional case using the theory of moments of measures. However, up to
now, the numerical implementation of the moment approach has proved impratical.

In this work we present an entirely different approach to solving the inverse prob-
lem, one that is geometrically based. Our methods can be applied to a reasonably
large class of one- and two-dimensional attractors which moreover are important
in image applications, the class of polyhulled disjoint attractors (PHD attractors).
This class includes those shown in figures 14–16. We formally define them in §2.
(The method also applies to figures 10–13 as these are ‘essentially disjoint’.) Given
an attractor A of this class we show how to find a W so that A = A(W) exactly.
In §2 we also introduce refinement IFSs and the extreme points theorem, the prin-
cipal result on which our work is based. This leads to the notion of formative and
decorative tiles.

Our method also makes use of the elementary properties of the orbits of points
under affine contractions. The orbit of a point x under the map w is the sequence of
iterates wk(x), k = 0, 1, . . .. In §3 we detail the correspondence between the eigenval-
ues and eigenvectors of a formative map and geometrical features of its trajectories,
a continuous version of an orbit. This leads to the notion of natural coordinate sys-
tems. In §4 we express these salient features in terms of polar coordinates based at
the extreme point under study.

A major obstacle in our approach to solving the inverse problem is that the orbits
of all the points of an attractor are mixed together and must be disentangled. In §5
we introduce a certain edge or margin tracking tool, the springbar function, for this
purpose and for eliciting the geometrical properties of trajectories. In §6 we introduce
the gap analysis for recovering the multiplicative periodicity of an orbit which was
lost in its trajectory and enabling the calculation of the eigenvalues associated with
a trajectory.

Ultimately the main task is that of distinguishing among several cases classified
by eigenvalues. As each tool is introduced, we detail its application to each spectral
case.

In §7 we show how to calculate the encoding of decorative tiles. Again our approach
is based on spectral methods.

Actually our geometrical method works for attractors beyond the class of poly-
hulled disjoint ones, for example on attractors all of whose tiles have finitely many
extreme points (disjoint or not), such as the fractal shrub. Further, by adding limit-
ing techniques, the subject of §8, the class which may be inverted expands to include
just touching (see §2) polyhulled attractors as well, such as the dragon attractor (see
figure 9). Moreover if only approximate solutions are required, the Collage theorem
(Barnsley et al. 1985), which states, roughly, that the better an image can be tiled
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1020 A. Deliu, J. Geronimo and R. Shonkwiler

by affine copies of itself, the closer will be the attractor of the resulting IFS to the
image, suggests that the class of solvable images can be greatly expanded although
we have not investigated this.

A major unfinished extension of the work, which the authors believe is possible,
is to non-polyhulled attractors such as the black spleenwort fern (see figure 8).

While the primary interest here is in the theoretical solution of the inverse problem,
our geometrical method is amendable to numerical implementation. As has been
previously noted, IFS encoding results in enormous data compression and hence
significant commerical value (Barnsley & Sloan 1985).

(a ) Summary of the method
1. At each extreme point p of the convex hull CA of A perform a springbar analysis

to obtain sufficient parameter information enabling the calculation of trajectory maps
at p.

2. Using the trajectory maps, calculate the domain of invariance and supporting
trajectories at each extreme point. Distinguish primary versus secondary extreme
points.

3. With the trajectory maps at p in hand, for each x in the domain of invariance at
p, perform a gap analysis on the fractal dust corresponding to the trajectory through
x to calculate its multiplicative period, λx.

4. Using the collection of spectra λx, calculate the minor eigenvalue and hence the
locally formative map at p. This solves primary maps; it remains to solve secondary
maps.

5. By matching spectra, determine the primary pre-image for each secondary ex-
treme point. By matching respective supporting trajectories calculate each secondary
decorative map; it remains to calculate interior decorative maps.

6. By means of fat-curves, well order interior tiles. Using the same techniques as
for secondary points above, successively solve, and colour, the interior tiles until the
entire attractor is coloured.

2. The class of disjoint polyhulled attractors

(a ) Equivalence classes of IFSs
It is well known, and easy to show by example, that distinct iterated function

systems can have identical attractors. (We do not regard a permutation of the maps
of an IFS as constituting a distinct one.) For example, if the attractor has symmetries,
groups of transformations, invariant under the particular symmetry, can be used to
construct equivalent systems.

Let E(A) denote the class of all iterated function systems whose attractor is A,

E(A) = {W : A(W) = A},
or E(A) = ∅ if A is not the attractor of any IFS.

Definition 2.1. We say an affine map w is invariant for the attractor A if w(A) ⊂
A.

Evidently any invariant map can be added to an IFS and the result will again be
an IFS for the same attractor. Conversely, it may be possible to remove one or more
maps from an IFS without affecting its attractor. We define the index of A to be the
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w w w w

u u u u u uu

Figure 1. First level tiles of the partial refinement example.

smallest number of maps which will generate the attractor A,

index(A) = min{card(W) :W ∈ E(A)}.
If W = {w1, . . . , wN} is an IFS for A, then the compositions w1 ◦ wi(A), i =

1, . . . , N , subtile w1(A). Hence

w1W = {w1 ◦ w1 ◦ w−1
1 , w1 ◦ w2 ◦ w−1

1 , . . . , w1 ◦ wN ◦ w−1
1 }

is an IFS for w1(A).
More generally, let W and W ′ be two iterated function systems for an attractor

A. We say W ′ is a refinement of W if every tile w′(A) of W ′ is contained in some
tile of W, that is w′(A) ⊂ w(A), for some w ∈ W. Given iterated function systems
W1,W2 ∈ E(A), with Nk = card(Wk), k = 1, 2, one of their common refinements,
W =W1 ◦W2, is the set of all compositions

W = {w1
i ◦ w2

j : w1
i ∈ W1, w

2
j ∈ W2}.

Since W2 induces a tiling of A, it follows that w1
i ◦ w2

j (A) ⊂ A, i = 1, . . . , N1,
j = 1, . . . , N2, and

N2⋃
j=1

w1
i ◦ w2

j (A) = w1
i

( N2⋃
j=1

w2
j (A)

)
= w1

i (A). (2.1)

Hence
N1⋃
i=1

N2⋃
j=1

w1
i ◦ w2

j (A) = A

showing thatW ∈ E(A). Of course the same holds for their other common refinement
W2 ◦W1. This proves the following.

Proposition 2.2. Let W1,W2 ∈ E(A), then also the refinement W1 ◦W2 ∈ E(A).

Equation (2.1) also shows that each tile w1
i (A) of W1 is itself subtiled by the W2

tiles w1
i ◦w2

j (A), in a manner similar to the tiling of A by W2. Thus each tile of the
common refinement W is either disjoint from or wholly contained in each tile of its
second argument W1.

Remarks 2.1. It is possible that for two iterated function systems having the same
attractor, the tiles of one only partially refine tiles of the other. This occurs for the
one-dimensional attractor due to the following two iterated function systems (see
figure 1; this example is due to George Donovan):

W =
{
w1(x) =

2
11
x, w2(x) =

2
11
x+

12
55
, w3(x) =

2
11
x+

3
5
, w4(x) =

2
11
x+

9
11

}
Phil. Trans. R. Soc. Lond. A (1997)
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and

U =
{
u1(x) =

4
121

x, u2(x) =
4

121
x+

24
605

, u3(x) =
2
11
x+

6
55
,

u4(x) =
4

121
x+

18
55
, u5(x) =

4
121

x+
222
605

, u6 = w3, u7 = w4

}
.

Obviously a common refinement may be further subtiled by yet another equivalent
IFS for its attractor. In particular we may take W2 above to be W1 in which case
we write

W2
1 =W1 ◦W1.

More generally, the power refinements of W are, for some k,

Wk =W ◦ . . . ◦W, k times

= {wi1 ◦ wi2 ◦ . . . ◦ wik : wij ∈ W, j = 1, . . . , k}.
(b ) Disjoint attractors

Definition 2.3. An IFS W is disjoint if its tiles are pairwise disjoint, wi(A) ∩
wj(A) = ∅, for 1 6 i < j 6 N . An attractor A is disjoint if it has at least one disjoint
IFS, that is W is disjoint for some W ∈ E(A).

The following is an elementary observation stemming from the compactness of
tiles.

Proposition 2.4. Given a disjoint IFS W for A, there exist δ > 0 such that

dist(wi(A), wj(A)) > δ for all wi, wj ∈ W, i 6= j.

Corollary 2.5. Let A be a disjoint attractor and w1(A) and w2(A) be two distinct
tiles for some disjoint W ∈ E(A). Let x(t), a 6 t 6 b, be a curve in R2 such that
x(a) ∈ w1(A) and x(b) ∈ w2(A). Then for some interval t ∈ (c, d), x(t) ∩A = ∅.

Proposition 2.6. Let W1 and W2 be disjoint IFSs for A. Then their common
refinements are also disjoint.

Proof. Let Wk = {wk1 , wk2 , . . .}, k = 1, 2. By symmetry it suffices to consider
W1 ◦ W2. If i 6= j then wki (S) ∩ wkj (S) = ∅, k = 1, 2, for any S ⊂ A. Hence if either
i 6= k or j 6= m then

w1
i ◦ w2

j (A) ∩ w1
k ◦ w2

m(A) = ∅.

Definition 2.7. An attractor A is said to be just touching if it has an IFS W
satisfying the open set condition and wi(A)∩wj(A) 6= ∅ for some generators wi 6= wj .
The open set condition holds forW if there exists a non-empty open set O such that
wi(O) ∩ wj(O) = ∅, for all i 6= j, and

⋃
iwi(O) ⊂ O (cf. Hutchinson 1981).

(c ) The convex hull and its extreme points
Given a line ` in the plane, ` = {(x, y) : ax + by = c}, where a, b, c ∈ R, ab 6= 0,

let J` = {(x, y) : ax + by > c} be the closed half space consisting of ` itself and its
open ‘positive’ half space. We say ` supports a set S if S ⊂ J` and S̄ ∩ ` 6= ∅. We say
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On the inverse fractal problem 1023

p ∈ S is an extreme point of S if p belongs to at least two distinct supporting lines
of S. Let ext(S) denote the set of extreme points of S.

Let A be an attractor, its convex hull, CA, is the intersection of all closed half-
spaces containing A,

CA =
⋂
`∈L

J`,

where ` ∈ L if and only if A ⊂ J`. Evidently CA is closed and is the smallest
convex set which contains A. We orient the boundary of the convex hull as usual,
counterclockwise. If A is the attractor of an IFS, then A is compact and thus CA is
a compact convex set.

Definition 2.8. An IFS is strongly disjoint if wi(CA) ∩ wj(CA) = ∅ for all i 6= j
where CA is the convex hull of A. Likewise, an attractor A is strongly disjoint if it has
a strongly disjoint IFS. Figure 14 shows a disjoint but not strongly disjoint gasket
type attractor.

It is obvious that proposition 2.6 continues to hold for strongly disjoint attractors.

Definition 2.9. An affine map w is k-invertible for an attractor A if it is invariant
for A and for every x ∈ wk(CA) ∩A; w−1(x) ∈ A; w is invertible if it is k-invertible
for k = 1. An IFS is invertible if every one of its maps is.

Theorem 2.10. If W is a strongly disjoint IFS for A, then W is invertible.

Proof. Since w(CA) ⊃ w(A), this follows easily from (1.1).

Theorem 2.11. If W is a disjoint IFS for A and w ∈ W, then w is k-invertible
for A for some k = 1, 2, . . ..

Proof. Since the wi(A), wi ∈ W, are disjoint compact sets, there is a δ > 0
such that the set distance between every (distinct) pair of sets wi(A) and wj(A),
wi, wj ∈ W, exceeds δ. Now let k be sufficiently large that diam(wk(A)) < δ. Then
by (1.1), if x ∈ wk(CA)∩A, it follows that x can not lie in wi(A) for wi 6= w. Hence
x ∈ w(A) and so w−1(x) ∈ A.

Corollary 2.12. With k as in the theorem, if x ∈ wk+n(CA) ∩ A, n > 0, then
w−i(x) ∈ A for 1 6 i 6 n. If G is an open subset of wk(CA) disjoint from A, i.e. a
gap in A, then wk+n(G) is a gap in A for all n > 0.

Definition 2.13. An attractor A is flat if for some line `, A ⊂ `. Obviously a
flat attractor has exactly two extreme points and its convex hull consists of a line
segment.

The following result is central to our work.

Theorem 2.14. (Extreme points) Let A be the attractor of an iterated function
system W. Then every extreme point p of A is the image of an extreme point q of
A under some generating map, that is

ext(A) ⊂
N⋃
i=1

wi(ext(A)).

Proof. See Berger (1991).
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The theorem allows, and it often occurs, that an extreme point p is the image
of itself under a generating map. This is a sufficiently important case to warrant a
definition.

Definition 2.15. An invariant map w for A is formative if its fixed point is also an
extreme point of A, otherwise it is decorative. An extreme point p is a primary point
or an extreme fixed point if it is the fixed point of some formative map, otherwise it
is secondary.

Remarks 2.2. A single tile can have more than one extreme point, even if one
of these is an extreme fixed point (see gasketflip, figure 13). It is also possible that
no extreme point is primary for a given IFS (see dragontails, figure 10); however,
we will show below that there always exists an equivalent IFS for every polyhulled
disjoint attractor in which at least one extreme point is primary and moreover in
which every secondary extreme point is the image of some primary one.

Proposition 2.16. Let W1,W2 ∈ E(A) and suppose the extreme point p is the
image of the extreme fixed point q under generating maps for both W1 and W2.
Then relative to their common refinement W1 ◦ W2, q remains primary and p is its
image under some generating map.

Proof. If w1(q) = w2(q) = q then also w1(w2(q)) = q. Similarly, if ŵ1(q) = p,
then ŵ1(w2(q)) = p.

(d ) The class of disjoint polyhulled attractors

Definition 2.17. An attractor is polyhulled if it has only finitely many extreme
points. Figures 7–16, except figure 8, are polyhulled.

Remarks 2.3. Every flat attractor is polyhulled.

Theorem 2.18. (Refinement) Let A be a polyhulled attractor. Then there ex-
ists W ∈ E(A) such that every extreme point p is the image p = w(q) of a primary
point q of A under some generating map w. If in addition A is disjoint, then W can
be chosen disjoint also.

Proof. Let W be an IFS for A, if A is disjoint, take W to be disjoint also. Let
p0 = p ∈ ext(A). By repeated application of the extreme points theorem, there exists
a sequence of extreme points p1,p2, . . ., and maps w1, w2, . . . in W such that

pi−1 = wi(pi), i = 1, 2, . . . .

But since there are at most finitely many distinct extreme points for polyhulled
attractors, the sequence must cycle, i.e. for some non-negative integers j0 and kp,

pj = pj+kp , j > j0.
If kp = 0, then pj0 is the fixed-point of wj0 . If kp 6= 0, consider the composition f

f = wj0+1 ◦ . . . ◦ wj0+kp .

Clearly pj0 is the fixed-point of f . If j0 > 0 then p itself is not a fixed-point. Instead
it is the image

p = w1 ◦ . . . ◦ wj0(pj0).
of the extreme fixed point pj0 under the composition w = w1 ◦ . . . ◦ wj0 . Let k =
max{kp, j0}. Then the conclusion holds for this point p for the refinement Wk of W.

Phil. Trans. R. Soc. Lond. A (1997)
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By proposition 2.16, if r is the image of an extreme fixed point of a generating
map in W, then it continues to be for Wk as well. Hence we may continue as above
for each extreme point and arrive at a new IFS W ′ ⊃ W satisfying the requirements
of the conclusion. If the original IFS is disjoint, W ′ will be also.

Corollary 2.19. Every polyhulled attractor has at least one primary point for
some IFS.

Proof. From the proof of the refinement theorem, pj0 is primary as is every extreme
point in the cycle in the refined IFS.

Remarks 2.4. In view of this result, the dragontails attractor of figure 10, has an
IFS for which the three extreme points (0,0), (1,0), and (0,1) are primary; in fact
the cubic refinement W3, see table 2, contains the map

w3
1(x) =

( 1
8 0
0 1

8

)
for which (0, 0) is fixed.

Definition 2.20. An affine contraction u is locally invariant for an attractor A if
there exists a neighbourhood N of its fixed point p such that u(N ∩A) ⊂ N ∩A (u
is not necessarily part of an IFS for A). A locally invariant map whose fixed point
is also an extreme point of A is locally formative. An extreme point p of A is locally
primary if it is the fixed point of some locally invariant map for A.

Theorem 2.21. Every extreme point of a polyhulled disjoint attractor is locally
primary.

Proof. Let p be such an extreme point. By the construction of the refinement
theorem, there is a non-singular affine map w such that p = w(q) where q is primary.
Let f be an affine map showing q is primary, then h = wfw−1 is the required
locally invariant map. For if W and F are the linear parts of w and f respectively,
w = W + (p−Wq) and f = F + (q − Fq), then h = WFW−1 + (p−WFW−1p).
Clearly h has the required properties on any open set containing the w tile of p and
disjoint from all other tiles.

3. Orbits of two-dimensional affine maps

From theorem 2.21 every extreme point p of an attractor A is the fixed point of
some locally formative map f . In this section we draw a correspondence between the
eigenvalues and eigenvectors of such a map and the structure of A near p. Letting L
be the corresponding Jordan form matrix and S the matrix whose columns are the
eigenvectors, then the linear part F of f is given by

F = SLS−1. (3.1)

The translational part of f is then easily determined knowing its fixed point p (see
equation (3.2)). Thus a complete list of characterizing information for an affine map
consists of (a) its eigenvalues, (b) its eigenvectors, and (c) its fixed point.

Since the eigenvalues of real 2 × 2 matrices are either both real or are complex
conjugates, we may divide the study into four cases: (E1) the eigenvalues are real
and distinct, (E2) the eigenvalues are equal (hence real) and there are two linearly
independent eigenvectors, (E3) the eigenvalues are equal and there is only one linearly
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independent eigenvector, and (E4) the eigenvalues are complex. As noted in the
Introduction, we exclude from consideration here attractors resulting from iterated
function systems containing singular maps. A disjoint tile resulting from such a map
will be confined to a line segment. Our methods can handle such attractors, but their
consideration results in having to deal with many additional special cases which we
leave for the reader. Moreover, in the last chapter we show these attractors can be
treated as limiting cases of non-singular attractors.

By our definition of extreme point, if the fixed point of a transformation lies on
at most one supporting line then it cannot at the same time be an extreme point of
the attractor. One of the aims of this section is to characterize, in terms of spectral
properties, those maps which can have extreme fixed-points and those which cannot.

(a ) Translation simplification
The general form of a two-dimensional affine transformation φ is(

r
s

)
=
(
a b
c d

)(
x
y

)
+
(
e
f

)
= Fx+ b,

or r = φx. Here F is the linear part of φ and b is the translation. All affine maps φ
in this work are assumed to be contractive (and hence uniformly contractive),

‖φx− φy‖ 6 s‖x− y‖ for some 0 < s < 1.

By the uniform contraction property, every orbit tends as a geometric series to a
unique limit p; thus for every x,

lim
n→∞

φnx = p.

Such a limit point p is by necessity the unique fixed point of φ,

φp = p.

In terms of F the fixed point satisfies the equation

Fp+ b = p or (I − F )p = b, (3.2)

from which p can be found since I − F is not singular when F is a contraction. On
the other hand, in solving the encoding problem, this equation can be used in the
converse way to calculate

b =
(
e
f

)
knowing F and p.

Now translate the origin to the fixed point p. Let x′ = x−p, and also y′ = y−p.
If y = φx then

y′ = Fx+ b− p = Fx+ b− (Fp+ b) = F (x− p) = Fx′.

Therefore by so translating, the study of orbits of affine maps is reduced to studying
orbits of linear maps; in particular the problem is reduced from six parameters to
four, namely a, b, c, d.

In the sequel we assume the translation has been done and dispense with the use
of primes to designate translated points. Thus Fx and φx will be the same.
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(b ) Orbits in the complex case
The next result shows that an affine map with complex eigenvalues cannot give rise

to a primary point. As a result, we may exclude case (E4) from further consideration
in this section.

Theorem 3.1. Let p be the fixed-point of an affine contraction with linear part
F and let Ω be the orbit of x 6= p. If the eigenvalues of F are complex, then for every
half-space H containing p, both H and its complement H ′ meet Ω . Hence such a
map cannot have an extreme fixed-point.

Proof. Let F be the 2 × 2 real matrix with complex eigenvalues. For 0 6 θ 6 π
define ∆(θ) as follows. Let u be the unit vector at angle θ (from some fixed reference
ray through p), that is arg(u) = θ, and let v be the unit vector Fu/‖Fu‖. Note
that v 6= 0 since 0 is not an eigenvalue of F . Put ∆(θ) = arg(v) − θ where arg(v)
is the angle of v from the reference ray between −π and π. Note that ∆(θ) 6= 0,
0 6 θ 6 π, and ∆(θ) 6= π for otherwise F would have a real eigenvector. Also note
that only angles θ in the range 0 to π need be considered since F (−u) = −F (u) for
linear maps.

Assume ∆(0) > 0 the other case being similar. Since ∆(·) is continuous, and
∆(π) = ∆(0), its graph is a connected compact subset of the rectangle [0, π]× [0, π].
Let m = min ∆(θ) and M = max ∆(θ), 0 6 θ 6 π. Then 0 < m 6 M < π. That
is m is the minimum angle by which F rotates a vector and M is the maximum
angle. Now let H be a closed half-space whose boundary, ∂H, contains p and assume
x ∈ H, x 6= 0, the case x ∈ H ′, the complement of H, being similar. We show Fnx
must lie in H ′ for some n. Taking one of the rays of ∂H from p as a reference, let
{x, Fx, . . . , F kx} be the initial terms of the orbit of x whose arguments increase but
are less than π. Since ∆(θ) is bounded below, this segment must be finite as shown.
But then arg(F k+1x) 6 arg(F kx) +M < arg(F kx) + π. Hence F k+1x ∈ H ′.

Corollary 3.2. No map for a flat attractor can have complex eigenvalues.

The orbits for the complex case spiral in toward the fixed point and conversely, if
the orbits spiral, then the eigenvalues are complex (see the dragon attractor, figure 9).

A linear map F may be decomposed into polar form F = UR where U is unitary
and R is symmetric (Nagy 1960). Suppose U is a rotation,

U =
(

cos θ − sin θ
sin θ cos θ

)
, R =

(
a b
b c

)
,

then in some sense the symmetric part, R, attempts to rotate vectors not lying on
an eigenmanifold toward its major eigenmanifold in spite of U . Orbits will not be
spirals if θ is not too big.

Theorem 3.3. Let F = UR be the polar decomposition of the linear part of the
affine contraction f and suppose U is a rotation. Let R have eigenvalues ν1 and ν2
respectively. Then f has spiral orbits if and only if(

ν1 + ν2

2

)2

cos2 θ < ν1ν2.

Proof. Let S be the matrix of normalized eigenvectors of R, then S is a rota-
tion matrix and hence SUS−1 = U . Thus the change of basis matrix SFS−1 =
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arg (x)

x

1, u-axis

2, v-axis
rcb

cf

Figure 2. Natural and polar coordinates.

SUS−1SRS−1 and is

U

(
ν1 0
0 ν2

)
=
(
ν1 cos θ −ν2 sin θ
ν1 sin θ ν2 cos θ

)
.

Hence the characteristic polynomial of F is

λ2 − ((ν1 + ν2) cos θ)λ+ ν1ν2.

It follows that the roots are complex if and only if the condition holds.

Corollary 3.4. For a rotational similitude, ν1 = ν2, the condition holds whenever
θ 6= kπ, k an integer.

Corollary 3.5. A rotational similitude has at most one supporting line at its
fixed point.

Proof. A rotational similitude whose rotation angle is not equal to π, has complex
eigenvalues and in this case the result follows from the theorem. On the other hand,
clearly a 180◦ rotational contraction cannot have more than one supporting line at
its fixed point.

(c ) Natural coordinates
Let p be an extreme point, let cf be the ray coincident with the forward (coun-

terclockwise) boundary or limb of the convex hull at p and cb the ray coincident
with the backward limb. We define a local polar coordinate system, (r, θ), at p with
r equal to the Euclidean distance of a point x from p and θ = arg(x) measuring
the angle counterclockwise from cf (see figure 2). In this subsection we define a co-
ordinate system at p by defining unit coordinate vectors e1 and e2 whose definitions
depend on the case (E1)–(E3).

Let λ1 and λ2 be the two real eigenvalues of a locally formative map F (having
eliminated case E4). Since F is a contraction, |λ1| < 1, and |λ2| < 1. In case E1, we
may assume without loss of generality that |λ1| > |λ2|. By the major eigenvalue, λ1,
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we mean the larger in magnitude or, if their magnitudes are equal, the positive one.
We refer to λ2 as the minor eigenvalue. Let e1 and e2 be normalized eigenvectors
corresponding to λ1 and λ2 respectively. Since −e is also an eigenvector if e is, they
are determined only up to direction at this point. We will show in the sequel that
exactly one ray of the eigenmanifold for λ1 lies in the exterior of CA; we take e1 to
lie along the other ray, i.e. to point into the convex hull. Take the direction of e2 to
be counterclockwise from e1.

In case E2 the locally formative map is given as F = λI where λ is the common
eigenvalue and I is the identity map; that is F is a non-rotational similitude and
every non-zero vector is an eigenvector. In this case we take the normalized vectors
e1 and e2 to lie along cf and cb, the limbs of the convex hull, respectively. So again
e2 lies counterclockwise from e1.

In case E3, the geometrical multiplicity one (or GM-1) case, we will show that
one ray of the eigenmanifold lies along the boundary of the convex hull CA at p. As
above, let the normalized eigenvector e1 be taken in this direction. Let e2, a pseudo-
eigenvector, be chosen perpendicular to e1 of unit length. Let its direction be taken
to point into CA.

In all cases, every point x in the plane has a unique representation

x = ue1 + ve2, (3.3)

for scalars u and v, where v is the projection onto the eigenmanifold of e2 along
the direction of e1 and u is the projection onto the eigenmanifold of e1 along the
direction of e2. We will refer to these (u, v) coordinates as the natural coordinates of
x with respect to F .

Now let `1 and `2 be the half-lines beginning at p and running parallel to e1 and e2
respectively. We refer to these half-lines as the eigendirections. Given a half-line, or
ray, `, by the notation `∪−` we mean the whole line containing `. The eigenmanifold
of λi is the line `i ∪ −`i, i = 1, 2. In terms of the natural coordinates, the plane is
divided into four natural quadrants, as usual in terms of the signs of u and v.

Let x = u0e1 + v0e2. Then the points xn of its orbit under a linear map F
corresponding to cases (E1) or (E2), are given by

xn = Fnx = λn1u0e1 + λn2v0e2, n = 0, 1, . . . ,

that is, xn has the natural coordinates

un = u0λ
n
1 and vn = v0λ

n
2 . (3.4)

The analogous equations for a case (E3) map is derived in §3 f . Note that u0 > 0 in
cases E1 and E2 but it is possible that u0 < 0 in case E3.

The following is self-evident from equations (3.4).

Proposition 3.6. The orbit of a point on an eigenmanifold is contained in the
eigenmanifold.

Proposition 3.7. Let the line ` contain a flat attractor A. Then ` is an eigen-
manifold for every generating map of A.

Proof. For contradiction, let F be a locally formative map of A for which ` is not
an eigenmanifold. Let p ∈ A be the fixed point of F and let x be a point of A distinct
from p. Then by assumption, neither natural coordinate of x is zero, u0 6= 0 and
v0 6= 0. Since the orbit of x must also lie on `, the point x1 = hx is a scalar multiple
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of x, so for some scalar α,

λ1u0e1 + λ2v0e2 = α(u0e1 + v0e2).

Therefore λ1 = λ2 = α. But then F is a pure contraction into p and every line
through p is an eigenmanifold, contradiction.

In the remainder of this section we examine the orbits occurring in spectral cases
(E1)–(E3).

(d ) Real unequal eigenvalues

Definition 3.8. Suppose the eigenvalues to be real and unequal. We distinguish
five subcases, (a) through (e). First, either λ2 = −λ1 or |λ1| > |λ2|. We refer to
the possibility λ2 = −λ1 as subcase (a) the alternating-similitude case. The latter
possibility, the differential contractions, can be further subdivided. Since we have
excluded singular maps from consideration, λ2 6= 0, so that in the remaining cases,
|λ1| > |λ2| > 0. There are four possibilities, (b) both eigenvalues are positive, the
exponential case, (c) the major eigenvalue is positive, the minor negative, the alter-
nating exponential case, (d) the major eigenvalue negative, the minor one positive,
and (e) both eigenvalues negative.

Proposition 3.9. If |λ1| > |λ2| then the orbit for any point x not on the minor
eigenmanifold tends asymptotically to the major eigenmanifold. If in addition λ1 > 0
then the orbit lies on one side of the minor eigenmanifold, otherwise it lies on both
sides.

Proof. If u0 6= 0, then the ratio

vn
un

=
(
v0

u0

)(
λ2

λ1

)n
−→ 0 and n→∞.

It follows that the orbit tends asymptotically to the u axis. By (3.4), if λ1 is positive,
then the sign of un remains the same as that of u0 for all n. Hence, in the natural
coordinate system, the orbit remains on the same side of the v-axis as u0. Otherwise,
for λ1 < 0, the sign of un alternates with each successive n.

Corollary 3.10. If |λ1| > |λ2| and λ1 < 0, then the orbit can have at most one
supporting line at p.

Since we will only be concerned with those cases for which there is more than one
supporting line, this result excludes from consideration subcases (d) and (e).

(i) Alternating-similitudes: λ2 = −λ1

When λ2 = −λ1, the even points, n = 2k, of an orbit are given by

u2k = u0(λ2
1)k and v2k = v0(λ2

1)k, k = 0, 1, . . . .

This is a sequence of points tending to p along the ray through (u0, v0). Similarly the
odd points tend to p along the ray through (λ1u0,−λ1v0). These rays form a cone
at p and more than one supporting line through p is possible provided the cone has
an acute interior angle over all points x = (u0, v0) ∈ A.

A map with these properties is a true similitude if and only if the eigenmanifolds
are orthogonal, otherwise only alternating points behave in true similitude fashion.
In the orthogonal case an orbit gives rise to symmetric trajectories about the major
eigenmanifold.
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Theorem 3.11. If λ2 = −λ1 then the limbs of the convex hull, cf and cb, contain
a single orbit.

Proof. It is easy to see that cones containing orbits nest.

Corollary 3.12. In this case the major eigendirection cannot coincide with cf or
cb.

Remarks 3.5. See figure 11, the 3-map pine.

Definition 3.13. Because of the similarity in the treatment of this case and that
of the true similitudes, we use the term extended similitude to refer to the cases
|λ1| = |λ2|.
(ii) Exponential case: λ1 > λ2 > 0

Definition 3.14. When the eigenvalues are both positive, then the discrete para-
metric equations for an orbit (3.4), parametrized for n = 0, 1, 2, . . . can be extended
to the real line, −∞ < n < ∞. (For emphasis we may use t in place of n.) The
resulting parametric equations for the position vector xt give rise to a continuous
curve containing the orbit of x0 = (u0, v0). We call this curve the trajectory of (u0, v0)
under F . When the minor eigenvalue is negative, the trajectory is taken as the curve
parametrized by −∞ < 2n <∞.

Now eliminate the parameter n from (3.4),

ln(u/u0) = n ln(λ1) and ln(v/v0) = n ln(λ2).

Hence
ln(u/u0)
ln(v/v0)

=
lnλ1

lnλ2
≡ 1− ρ. (3.5)

So
u = u0(v/v0)1−ρ. (3.6)

Proposition 3.15. Let the eigenvalues of F satisfy λ1 > λ2 > 0. Then the
trajectory through any point (u0, v0), u0 6= 0, v0 6= 0, is an exponential curve with
exponent lnλ1/ lnλ2. If all the points of the attractor lie strictly on one side of the
minor eigenmanifold, then the attractor has a cusp at p.

Proof. The first conclusion follows from (3.6). If all points of the attractor lie
strictly on one side of the minor eigenmanifold, then all orbits will be asymptotic to
one ray of the major eigenmanifold.

Remarks 3.6. Since (3.6) is single valued, trajectories are either disjoint or iden-
tical with the common limit point p.

Remarks 3.7. See figure 12, flame.

(iii) Alternating exponential case
In case λ1 > 0 and λ2 < 0, the even orbit points x, F 2x, . . . work just as above

except with effective eigenvalues of λ2
1 and λ2

2. The odd orbit points also behave as
above but occur on the opposite side of the v axis with squared eigenvalues. Hence in
this case there is a cusp at the fixed-point along the positive u axis and consequently
multiple supporting lines can exist.
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(e ) Equal eigenvalues, linearly independent eigenvectors: non-rotational similitude
Let e1 and e2 be two linearly independent eigenvectors and let λ be their common

eigenvalue. Let x = u0e1 + v0e2 be any point. Then Fx = u0λe1 + v0λe2 = λx.
Hence F is a contraction by λ in each direction in this case, i.e. a non-rotational
similitude. The orbits will lie on straight lines through the fixed-point. There are
two subcases, λ > 0 and λ < 0. In the latter, the orbit lies on both sides of the fixed
point and hence there can be at most one supporting line, thus we may eliminate
the subcase λ < 0 from consideration.

(f ) Geometrical multiplicity one (GM-1) case: λ2 = λ1

By Jordan canonical form, F can be written as(
λ γ
0 λ

)
(3.7)

for a basis e1, e2 where the former is an eigenvector for the eigenvalue λ and the
latter is orthogonal to the first. It may be seen that by choosing e2 directed into
the attractor, γ is positive. But since e2 is normalized, γ is not necessarily 1. Now
let x be a given vector. If x = u0e1, then the orbit {Fnx = u0λ

ne1 : n = 0, 1, . . .}
is a geometric sequence along the line through e1. The sequence confines itself to
the positive (or negative) side of the u-axis if and only if λ > 0. Otherwise suppose
x = u0e1 + v0e2, v0 6= 0. Then by trivial induction,

Fnx = λnv0e2 + (nλn−1v0γ + λnu0)e1, n = 0, 1, . . . .

In parametric equations

un = nλn−1v0γ + λnu0, n = 0, 1, . . .

vn = λnv0. (3.8)

Proposition 3.16. Orbits of an affine map with equal eigenvalues and only one
linearly independent eigenvector tend asymptotically to the major eigenmanifold (the
u-axis).

Proof. Clearly un and vn tend to 0 as n→∞. Moreover the ratio |vn/un| is given
by ∣∣∣∣ vnun

∣∣∣∣ =
|v0|

|nγ(v0/λ) + u0|
and is O(1/n) (harmonic) for n→∞.

(i) Geometrical multiplicity one (GM-1) trajectory
If λ < 0, then unless v0 = 0 (that is the attractor is flat), nλn−1v0 dominates λnu0

in (3.8) and this term changes in sign with n. Hence so does un. Similarly vn = v0λ
n

changes in sign with n and so for large n, un and vn are opposite signed and alternate
in sign. Since the orbit is at the same time asymptotic to the u-axis, it follows that
there can be no supporting line at the fixed point and so this possibility is excluded
from consideration.

Now suppose λ > 0 and consider the sign of v0. If v0 > 0 then from (3.8) both vn
and (for large n) un are positive and so the orbit approaches the u-axis from the first
quadrant. But if v0 < 0, then both vn and (eventually) un will be negative and now
the orbit tends to the u-axis from the third quadrant. Since p is an extreme point,
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points of the attractor cannot lie on both sides of any line through p and proves the
following.

Proposition 3.17. The major eigenmanifold must be a supporting line of the
attractor in the GM-1 case.

For λ > 0, we may consider n to be a continuous variable, −∞ < n < ∞, and
equations (3.8) as the parametric equations of a curve. From the second equation in
(3.8), n = (ln v − ln v0)/ lnλ. From the first equation,

u =
nλnv0γ

λ
+ λnv0

u0

v0
=
nvγ

λ
+
u0

v0
v

=
(

γ

λ lnλ
(ln v − ln v0) +

u0

v0

)
v

=
[(

u0

v0
− γ ln v0

λ lnλ

)
+

γ

λ lnλ
ln v
]
v

= (a+ b ln v)v, (3.9)

where the constants a and b are given by

a =
u0

v0
− γ ln v0

λ lnλ
and b =

γ

λ lnλ
. (3.10)

From (3.8) the slope of the secant line segment joining the origin (0, 0) to the point
(u, v) is given by

u

v
= a+ b ln v.

Since b 6= 0, this slope tends monotonically to ±∞ as v tends to 0 (for sufficiently
small v). Hence, once again, the attractor will have a cusp at p along the major
eigenmanifold if all points of the attractor lie strictly above the minor eigenmanifold.
Consequently multiple supporting lines are possible in this case.

Remarks 3.8. See figure 12, flame.

(g ) Summary
We collect here some observations of the previous subsections. Coordinates refer

to figure 2.

Theorem 3.18. Let F be a locally formative differential contraction for the two-
dimensional attractor A with fixed point p. Assume the eigenvalues of F are distinct.

(a) If A is flat, then it is parallel to an eigenmanifold of F .
(b) If A is not flat, then the major eigenvalue of F is positive, λ1 > 0, the major

eigenmanifold, `1, of F meets the deleted convex hull CA−{p} ofA, arg(`1) 6 arg(cb),
and the minor eigenmanifold, `2 meets at most the boundary ∂CA of CA, that is
arg(`2) = 0 or arg(`2) > arg(cb).

Proof. The only undemonstrated assertions are those about the major and minor
eigenmanifolds of F . For the major eigenmanifold, suppose the assertion is false.
Since the orbit for any x not lying on `2 tends asymptotically to `1, points of the
orbit of such an x must lie in every positive cone centered at `1, in particular the
cone of half-angle 1

2(arg(`1)− arg(cb)). This contradicts that cb supports A.
For the minor eigenmanifold, suppose not. Then there are points of the attractor
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x and y lying on both sides of `2 ∪−`2. By the analysis of this section, one will tend
to `1 and the other to the opposite side, −`1. Hence the line `1∪−`1 can be the only
supporting line through p. This contradicts that p is an extreme point.

Corollary 3.19. Relative to the natural coordinate system at p, all points of the
attractor have non-negative u coordinate, that is the entire attractor lies on one side
of the minor eigenmanifold, the first or fourth quadrants or both.

Proof. The minor eigenmanifold is a supporting line for the attractor at p and
therefore all points of the attractor have either non-negative or non-positive coor-
dinates. Since the positive u axis is inside or on the hull of A, the coordinates are
non-negative.

Corollary 3.20. With hypothesis as above, unless `2 coincides with one of cf or
cb, A has a cusp at p.

Proof. All points of the attractor have positive u coordinate, and therefore tend
asymptotically to `1.

Theorem 3.21. In every case trajectories are single valued as parametrized by
the minor natural coordinate v. Hence the natural coordinate v may be taken as the
trajectory parameter, u = t(v).

The results of this section may be summarized in table 1 which correlates the spec-
tral nature of a map with the geometrical properties of its orbits near its fixed point.
Note that only in the cases: alternating-similitude, GM-1, exponential, alternating
exponential, and non-rotational similitude can the fixed point also be an extreme
point of the attractor.

4. Polar coordinate representations

The most readily accessible trajectory is the one which constitutes the edge or
margin of an attractor. In the next section we introduce a tool, the springbar function,
for finding it. We show that from the resulting polar coordinate plot, enough can be
learned to enable the construction of arbitrary trajectories. In this section we lay the
groundwork for these plots by calculating the polar coordinate plots for the several
spectral cases

In this section we assume that p is the extreme fixed point of the formative or
locally formative map F .

In this and subsequent sections we allow the direction of e2 to depend upon the
context in such a way that when a point x ∈ A is chosen, the direction of e2 is selected
so that x has non-negative component along e2. Then the natural coordinate v is
always non-negative.

(a ) Polar representation of trajectories by case
Initially the eigendirections are unknown, hence it is preferrable to recast the

trajectories of §3 in terms of a local polar coordinate system. Distance r is measured
from p and angles θ are measured from the forward limb of the convex hull (see
figure 2, §3 b). In this section we obtain the polar form of the trajectory curves
for each spectral case. Note that the alternating cases follow their non-alternating
counterparts but with the square of their eigenvalues.
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Table 1.

eigenvalues designation orbital geometry springbar type

non-primary

complex no primary points spirals —
λ1 < 0, λ2 < 0 no primary points locally sigmoid —
λ1 < 0, λ2 > 0 no primary points locally convex —

extended similitudes

λ2 = −λ1 alternating-similitude wedge, no cusp eventually const.
λ2 = λ1, 2 e-vect. non-rot. similitude wedge, no cusp. eventually const.

differential contractions

λ1 > 0, λ2 > 0 exponential cusp/wedge mono./const.
λ1 > 0, λ2 < 0 alt. exponential cusp, no wedge strictly mono.

geometrical multiplicity one (GM-1)

λ2 = λ1, 1 e-vect. harmonic cusp, no wedge strictly mono.

(i) Positive refinement for alternating cases
Let W = {w1, w2, . . . , wN} be an IFS for A with a (globally) formative map w1

whose minor eigenvalue is negative. The partial refinement

W ′ = {w1w1, w1w2, . . . , w1wN , w2, . . . , wN}
is an equivalent IFS for A since w1(A) =

⋃N
1 w1wi(A). But now the eigenvalues

of w2
1 are both positive. The additional maps, w1wi, i 6= 1, are decorative. In this

way we replace all formative maps in W having negative minor eigenvalue, by its
subtile partial refinement one by one and thereby arrive at an equivalent IFS for the
attractor for which the alternating cases do not occur for the formative maps. The
resulting IFS is the positive refinement of W.

Likewise, one may ignore consideration of the alternating cases for locally formative
maps since the spectral types of their squares will match the appropriate globally
formative generating map in the positive refinement W ′. In this way we no longer
have to treat the alternating or extended similitude cases.

In order to obtain a minimal IFS solution, one should discriminate for negative
minor eigenvalues. However, from the foregoing it is not necessary to do so. Never-
theless it is possible to test for the alternating cases. We leave the development of
these tests to the reader.

In the sequal we will assume this positive refinement has been done and that all
eigenvalues are non-negative.
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Figure 3. Definition of some angles.

(ii) Extended similitudes: λ2 = λ1

In this case F is exactly λI with only one unknown parameter, λ. Trajectories of
F are rays eminating from the fixed-point p and have the polar form

θ = const.

(iii) Differential contractions: λ1 > λ2 > 0
In natural coordinates an exponential trajectory is given from equation (3.6) by

u = u0(v/v0)1−ρ. (4.1)

To convert this to polar coordinates, let r be as above and let φ measure the angle
from `1 (the u axis), φ = |θ − arg(`1)|, θ = arg(x). Recall from §3 d that `1 is
the trajectory asymptote and therefore is known (see figure 3). Let ω be the angle
between the eigenvectors e1 and e2 and let ω′ = π − ω (see figure 3).

By the law of sines
v

sinφ
=

r

sinω′
(4.2)

and by the law of cosines

r2 = u2 + v2 − 2uv cosω′. (4.3)

Therefore substituting (4.2) into (4.1) gives u in polar coordinates

u =
u0

v1−ρ
0

(
r sinφ
sinω′

)1−ρ
.

Hence equation (4.3) for r becomes

r2 = u2
0

(
sin2 φ

v2
0 sin2 ω′

)1−ρ
(r2)1−ρ +

r2 sin2 φ

sin2 ω′
− 2u0

(
sinφ

v0 sinω′

)1−ρ
r1−ρr

sinφ
sinω′

cosω′.

Divide by r2 (r 6= 0)

1 = u2
0

(
sin2 φ

v2
0 sin2 ω′

)1−ρ
r−2ρ +

sin2 φ

sin2 ω′
− 2u0

v1−ρ
0

(
sinφ
sinω′

)2−ρ
(cosω′)r−ρ.
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This is quadratic in r−ρ

u2
0

(
sin2 φ

v2
0 sin2 ω′

)1−ρ
(r−ρ)2 − 2u0 cosω′

v1−ρ
0

(
sinφ
sinω′

)2−ρ
(r−ρ) +

(
sin2 φ

sin2 ω′
− 1
)

= 0.

Solve for r−ρ by the quadratic formula. It may be verified that the solutions are

r−ρ =
v1−ρ

0 sin−ρ ω′

u0 sin1−ρ φ
sin(φ± ω′).

Since r is always positive (assume φ is positive, choose the v axis always on the side
of the trajectory), then we must choose the + sign because φ can tend to 0. The
solution for r is

r =
(

u0

v1−ρ
0

)1/ρ

sinω′
(

sin1−ρ φ
sin(φ+ ω′)

)1/ρ

. (4.4)

As φ tends to 0 (at the asymptote

sin1−ρ φ
sin(φ+ ω′)

−→ φ1−ρ

sinω′

and therefore r tends to

r =
sinω′

sin1/ρ ω′

(
u0

v1−ρ
0

)1/ρ

φ(1−ρ)/ρ =
(u0/v

1−ρ
0 )1/ρ

(sinω′)1/ρ−1 φ
1/ρ−1.

Taking logarithms

ln r = ln
(

(u0/v
1−ρ
0 )1/ρ

(sinω′)1/ρ−1

)
+
(

1
ρ
− 1
)

lnφ (4.5)

asymptotically as φ→ 0.

Theorem 4.1. Let F be locally formative for A at p with distinct eigenvalues,
λ1 > λ2 > 0. Let ω be the angle between their eigenvectors and let ρ = lnλ1/ lnλ2−1.
For any point x of A not lying on an eigenmanifold of F , the graph of η = ln r versus
ξ = lnφ for the trajectory through x tends asymptotically to a straight line as
ξ → −∞. If m and b are the slope and intercept respectively of this line, then

m =
1
ρ
− 1 (4.6)

and

eb =
(u0/v

1−ρ
0 )1/ρ

(sinω)1/ρ−1 (4.7)

from which ρ and ω can be determined.

Proof. This is a summary of the above.

(iv) Geometrical multiplicity one (GM-1): λ2 = λ1

In this case the natural coordinates (u, v) measure distances along, respectively,
the asymptote and an axis orthogonal to it. Further the trajectory is given by (3.9)

u = (a+ b ln v)v, (4.8)
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where

b =
γ

λ lnλ
, and a =

(
u0

v0
− γ ln v0

λ lnλ

)
. (4.9)

Since the asymptote lies along the boundary of the convex hull in this case, φ and
θ are the same (at least if the asymptote lies along the forward limb of the convex
hull).

Change to polar coordinates,
v = r sinφ

and

r2 = v2 + u2

= r2 sin2 φ(1 + (a+ b ln(r sinφ))2).

Solve for ln r, √
(1/ sin2 φ− 1)− a

b
= ln r + ln(sinφ).

For φ near 0 the left-hand side tends to

1/bφ,

and the right to ln r + lnφ. Hence, asymptotically,

ln r = 1/bφ− lnφ

=
(

1/b
φ lnφ

− 1
)

lnφ.

As φ → 0, 1/φ lnφ → ∞. Therefore the graph of ln r versus lnφ does not tend to a
straight line; rather its slope tends to +∞.

Theorem 4.2. In log polar coordinates, the slope of a GM-1 trajectory tends to
+∞ as r (and φ) tend to 0. Hence this case is distinguished from the exponential
case by their respective ln r versus lnφ graphs.

5. Springbar function

From the previous two sections we know the character of trajectories for a given
type of map. Conversely, from the character of the attractor at an extreme point p
we can calculate the locally formative map. In this section we show how to do this
up to a single scalar parameter. This is sufficient for calculating a trajectory through
a given point.

(a ) Supporting trajectories

Definition 5.1. By a trajectory family at an extreme point p we mean the collec-
tion of trajectories tx0(·), one for each initial point x0 ∈ A, corresponding to some
locally formative map F at p. Thus a trajectory family is given in natural coordinates
by

u = tx0(v) = u0

(
v

v0

)1−ρ
, v > 0 (5.1 a)
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if F is a differential contraction or by

u = tx0(v) =
u0

v0
v, v > 0 (5.1 b)

if F is an extended similitude or by

u = tx0(v) = (a+ b ln v)v, v > 0 (5.1 c)

with constants a and b as in §3 f if F is of geometrical multiplicity one.

Definition 5.2. By the trace of a trajectory we mean its intersection with the
attractor. A trace is complete if it has the extreme point p as a limit point, otherwise
it is eventually void.

Definition 5.3. The domain of invariance of a trajectory family is the set of
points x0 ∈ A whose trajectories have a complete trace.

Definition 5.4. Let t1 and t2 be two trajectories of the trajectory family at p
for x1 and x2 respectively having complete traces. If they lie in the same (natural)
quadrant, we say t1 is below t2, t1 ≺ t2, if t1(v) 6 t2(v), 0 < v <∞. Two trajectories
lying in different quadrants are not comparable.

Definition 5.5. If points of the attractor occupy two natural quadrants, then the
supporting trajectory in each is the minimal trajectory with respect to this partial
order (see figure 4). If the attractor lies in only one natural quadrant at p with respect
to a locally formative map, then the two supporting trajectories are the minimum
and the maximum trajectories with respect to this partial order. Treat trajectories
lying along the u-axis as the limiting case of trajectories from within the quadrant.

Remarks 5.9. The supporting trajectory for the lower right-hand frond of the
3-map pine (see figure 11) runs along the frond itself and not along the convex hull
since the latter is an eventually void trajectory for this extreme point.

Theorem 5.6. If the attractor A contains a point lying strictly on one side of the
major eigendirection, `1, of F , then A has a supporting trajectory on that side.

Proof. Let x be a point of the attractor not lying on `1, say the v coordinate of
x is positive the other case being similar. Let m be a line through x parallel to `1.
For every point a ∈ A in the first quadrant, let ua be the point on m where the
trajectory through a intersects m. The set of all such ua is bounded below and so
has an infimum, u∗. Then e∗, the trajectory of F through u∗, evidently supports A.
It remains to show that e∗ is the trajectory of some point of A.

For δ = 2−n let en be a trajectory of A whose intersection un with m is within δ
of u∗. The mapping which sends un 7→ en to its trajectory is a homeomorphism.

Let an be the point of A on en most distant from the fixed point p. The set
{an : n = 1, 2, . . . }, as an infinite subset of the compact set A, must have a limit
point in A, say a∗. Observe that the points an are bounded away from p. This is
because p lies in the secondary tile F 2(A) and since an is the most distance attractor
point on an orbit, it can’t be in F 2(A) as all these points are images under F of some
more distant point of A.

Since the points an are bounded away from p, the limit point a∗ is not p and
therefore generates an orbit. By the homeomorphism, its trajectory likewise has a
limit point on m. But the only one is u∗. Hence the trajectory is exactly e∗.
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Figure 4. Supporting trajectories.

Definition 5.7. Let t∗ be a supporting trajectory of A at p. Its trace will be
referred to as a margin of A at p.

(b ) Springbar functions
The most readily accessible trajectory is the one which constitutes the edge or

margin of an attractor. In this section we introduce a tool, the springbar function,
for finding it. We show that from the resulting polar coordinate plot, enough can be
learned to enable the construction of trajectory families.

Definition 5.8. Let p be an extreme point of the attractor A and let p′ be the
adjacent extreme point on the convex hull CA counterclockwise from p. Let r measure
Euclidean distance from p and for each r > 0 let α = α(r) be defined by

α = inf{arg(x) : x ∈ A ∩Bp(r) }
where arg(x) is measured from the line through pp′ to the line px and Bp(r) is
the ball of radius r around p. We refer to the function α so defined as the forward
springbar function. It has the following properties: (1) the infimum is attained, (2)
α is monotone non-increasing with values from 0 to π, and, due to the use of the
closed ball, (3) α is right continuous.

Analogously we define the backward springbar function β = β(r) by

β = sup{arg(x) : x ∈ A ∩Bp(r) }
where arg(x) is measured as above. The properties of β are the same as above except
that β is monotone non-decreasing and need not attain the value 0.

The small crosses in figure 4 are points of the attractor upon which the springbar
has come to rest.

Put the two together in one plot with α to the right along the positive abscissa
and β to the left along the negative abscissa. Either way, r increases away from the
origin. We call this the springbar plot at p.

There is a close connection between the supporting trajectories at p and the for-
ward and backward springbar functions.

Proposition 5.9. Infinitely many points of the margin on the forward support-
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Figure 5. Forward springbar function for figure 4.

ing trajectory lie in the graph of the forward springbar function. Between any two
such points, the forward springbar function lies above or on the polar coordinate
representation of the forward supporting trajectory. Similar statements hold for the
backward springbar function and the backward supporting trajectory.

Proof. Since the supporting trajectory is a trajectory from the domain of invari-
ance, there are attractor points on it inside every deleted ball. By the disjointness
of tiles, there is a ball of some positive radius, r0 > 0, such that the only points of
the attractor inside this ball also belong to the tile containing p. Hence for r 6 r0,
the springbar will either come to rest on a point of the margin or on a point in the
domain of invariance whose trajectory is interior to the supporting trajectory. This
proves that the springbar function for r 6 r0 lies above or on the polar coordinate
plot of the supporting trajectory. On the other hand, since all three types of sup-
porting trajectories are convex, every point of the margin with radius less than r0
must also lie on the springbar plot.

(c ) Trajectory family determination
In this subsection we determine, for the most part uniquely, the trajectory family

at an extreme point p by relating the geometry at p to the three spectral cases and
the additional subcases resulting from the interplay between the eigenmanifolds and
the convex hull. The purpose is to justify the orbital geometry and springbar types
columns of table 1 of §3 g.

(i) Non-rotational similitude: λ2 = λ1

Since the trajectories are rays, in a small enough neighbourhood of p the attrac-
tor will be wedge-shaped (see the boughs of the 3-map pine, figure 11). Hence the
springbar plot will be two-sided constant if F is globally formative, or two-sided
asymptotically constant if F is only locally formative. There will be a jump discon-
tinuity at the origin equal to the interior angle between supporting trajectories at p,
the wedge angle. The trajectory family in this case is (5.1b).

Every direction in this case is an eigendirection, and therefore there are no sub-
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cases to deal with here arising from an interplay between the convex hull and the
eigenmanifolds.

Note that while the contraction factor of a non-rotational similitude is evident in
its orbits, that information is lost in its trajectories, hence the springbar plot cannot
determine the contraction factor.

(ii) Exponential: λ1 > λ2 > 0
There are four subcases here depending on the relationship between the eigenman-

ifolds and the limbs of the convex hull at p: (a) neither coincides with the boundary,
(b) `1 lies on ∂CA but `2 does not, (c) `2 lies on ∂CA but `1 does not, or (d) both
coincide with the boundary (false similitude case).

If neither eigendirection lies on ∂CA, the supporting trajectory on each side of
`1 will be an exponential curve (see §3 d); hence there is a two-sided cusp in this
case (as in figure 4). The forward springbar function is monotonically decreasing
and reaches 0 when r equals the distance to the next extreme point p′. As r → 0,
α(r) → arg(`1) (see figure 5). The backward springbar function is monotonically
increasing and tends to the interior angle of the convex hull at p. Hence the plot is
continuous at the origin.

If the major eigendirection lies on ∂CA but the minor does not, then that boundary
of the hull itself will be a straight line supporting trajectory while on the other side
it will be an exponential curve. Hence there will be a cusp at p, and consequently
the springbar function is constant on one side and monotonic on the other. Again
the springbar plot is continuous at the origin in this case. We summarize these facts
in the following proposition.

Proposition 5.10. In subcases (a) and (b) there is a cusp at p and the springbar
plot is continuous at the origin,

lim
r→0

(α(r)− β(r)) = 0.

If the minor eigendirection lies on ∂CA but the major one does not, then again
the boundary of the convex hull itself will be a straight line supporting trajectory
while the other side will be an exponential curve asymptotically tangent to the major
eigendirection. However, this time there will be an asymptotic wedge at p, instead
of a cusp, equal to the angle ω between the major and minor eigendirections. The
springbar plot will have a jump discontinuity at the origin equal to this angle.

Proposition 5.11. In subcase (c) there is an exponential wedge at p,

lim
r→0

(α(r)− β(r)) = ω > 0,

where the wedge angle ω is the angle between the eigenmanifolds at p.
If both eigenmanifolds lie on ∂CA, then both supporting trajectories will be the

straight lines of the boundary of the convex hull and the springbar functions will
be constant with a jump discontinuity at the origin. Unfortunately this is also the
signature of an extended similitude case as we have seen above. Therefore we will
have to discriminate the two cases in some other fashion than by their springbar plot
(see §5 c). We refer to this as the false similitude case.
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Figure 6. Log-log plot of the springbar function of figure 5.

(iii) Calculating the trajectory family for an exponential extreme point
Thus we see that the springbar curve lies above the polar form of the supporting

exponential trajectory except where the two have a common value, that is touch.
Moreover they touch infinitely often corresponding to a geometric sequence in their
minor natural coordinate since every point x lying on such a trajectory, generates
an entire orbit contained in that trajectory.

The same will be true of their respective log-log plots. More precisely, since the cusp
angle arg(`1) can be observed in this case, we may form the plot of η = ln(arg(`1)−α)
versus ξ = ln r for a forward springbar plot (or a plot of ln(β−arg(`1)) versus ln r for a
backward springbar plot) and compare with their supporting trajectory counterpart.
From the observations of §4 a, the log-log trajectory plot tends asymptotically to
a straight line with slope M = 1/m and intercept B = −b/m to use the notation
of equations (4.6) and (4.7) (see figure 6). Moreover the log-log springbar plot lies
above the trajectory plot but touches it almost periodically. These considerations
yield the following theorem and procedure for calculating the slope M and intercept
B.

Theorem 5.12. For x < 0 and y < η(x) let `(x, y,M) denote the ray on −∞ <
ξ 6 x through (x, y) and having slope M > 0. Let

M(x, y) = inf{M : `(x, y,M) lies below η(ξ), ξ 6 x},
and let

M(x) = lim
y→−∞

M(x, y).

M(x) is constant for all x, say equal to M∗. Let

y(x) = sup{y : `(x, y,M∗) lies below η(ξ), ξ 6 x}.
Finally let B(x) denote the intercept of the extension of `(x, y(x),M∗), then

B = lim
x→−∞

B(x).
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Proof. By previous results the springbar curve lies above the polar plot and the
latter tends to a line. That both limits above exist follows from the observation that
the function M(x, y) is monotone in y and the function B(x) is monotone in x.

Corollary 5.13. The parameters m and b of (4.6) and (4.7) are given by

m =
1
M

and b = −mB.
In turn, the parameters ρ of (5.1a) and the angle ω between the major and minor
eigendirections are given by

ρ =
1

m+ 1
and sinω =

(u0e
−bρ)1/(1−ρ)

v0
.

Hence in this case both eigendirections can be calculated.

Proof. These statements follow from the cited equations.

(iv) Geometrical multiplicity one: GM-1, λ2 = λ1

In this case the single eigendirection lies on ∂CA (see proposition 3.17) and so the
limb of the convex hull on that side will be a straight line supporting trajectory. On
the other side there will be a harmonic supporting trajectory. Hence the attractor
will have a cusp at p.

Having distinguished this case from that of a differential contraction by the un-
bounded slope in this case of the log r versus log φ springbar plot, theorem 4.2, it
remains to solve for the matrix parameters γ and λ, (3.7).

As in the differential contraction case, the springbar plot will lie above the polar
coordinate graph of the harmonic supporting trajectory and touch it infinitely often
as r → 0. It follows likewise that the natural coordinate (u, v) plot of the springbar
function also lies above that of the supporting trajectory. Hence for a given value
of v, the springbar value of u exceeds or equals that of the harmonic supporting
trajectory (when u exists) and so the springbar plot of η = u/v versus ξ = ln v lies
above the corresponding graph of the harmonic supporting trajectory and the two
touch infinitely often as ξ → −∞.

Now the η versus ξ trajectory graph is a straight line. Its slope is given by b =
γ/(λ lnλ) < 0 and its intercept is given by a = u0/v0 − b ln v0 (see equation (3.10)).
Therefore by fitting a line from below to this η versus ξ springbar plot the parameters
a and b can be calculated. We summarize all this in the following theorem.

Theorem 5.14. In the GM-1 case the unknown parameters a and b may be
calculated by fitting a straight line from below to the springbar plot of η = u/v
versus ξ = ln v.

Proof. By a procedure similar to that of the differential contraction case (theo-
rem 5.12 above), the negative slope of a tangent line from below can be determined.

It follows that here, as in the other cases, enough information is available from the
springbar plot to enable the calculation of arbitrary trajectories parametrized by the
minor natural coordinate v. In the next section we show how to calculate λ from the
pattern of points lying on such a trajectory. Then γ is found from

γ = bλ lnλ. (5.2)
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(d ) Summary

Theorem 5.15. With the exception of the false similitude case, trajectories are
uniquely determined by the local geometry. That is, the locally formative map is
determined to within a scalar parameter such that given an initial point x0, the
trajectory through x0 can be calculated.

Proof. The existence of a cusp at p implies the locally formative map will be either
a differential contraction or GM-1 case. The shape of the cusp uniquely determines
which and moreover uniquely determines the trajectory parameters. Except for the
false similitude possibility, the absence of a cusp implies a similitude case.

Remarks 5.10. See figure 16 for an example of the false similitude case where the
locally formative map can be either a differential contraction or a similitude.

6. Gap analysis

The techniques of the last section enable one to calculate trajectory mapping
functions for the locally formative map at each extreme point of the convex hull.
However, trajectories are not orbits. One scalar parameter separates the two, for in-
stance knowledge of the minor eigenvalue, which, when combined with the trajectory
information, completely determines the locally formative map.

Therefore we have reduced the problem to one dimension, and in fact, for one-
dimensional attractors, all of which may be interpreted as non-rotational similitudes
(see §1), this section is the starting point for their solution.

A note about flat attractors. Recall that a flat attractor can arise from a two-
dimensional IFS when the fixed points lie along a line and an eigenvector of each
map is parallel to this line. However, upon encountering a flat attractor, one would
proceed to solve it as a one-dimensional attractor.

Throughout this section F will be (the linear part of) either a similitude, differen-
tial contraction or harmonic locally formative map at the extreme point p. Further
assume trajectory maps are parametrized on 0 6 v 6 1.

(a ) Projected trajectory characteristic functions

Definition 6.1. Given a trajectory tx through x we define a one-dimensional
fractal subset, D(tx), of the unit interval as follows. If F is a similitude, then D(tx)
is the trace of tx. If F is a differential contraction, then D(tx) is the projection of
the trace of tx onto the minor eigenmanifold, that is, letting P`2 be the operator in
the plane projecting points onto the minor eigenmanifold `2∪−`2 parallel to `1. Put

D(tx) = P`2(A ∩ tx).

Thus D(tx), the projected fractal dust, is the subset of the minor eigenmanifold
consisting of the v-coordinates of attractor points on the trajectory tx.

Proposition 6.2. The characteristic function χD(tx)

χD(tx) =
{

1, if v ∈ D(tx)
0, otherwise

is asymptotically ‘multiplicatively periodic’ for x ∈ A in some neighbourhood of p,
that is, for some 0 < η 6 1 and some λ > 0, χD(tx)(v) = χD(tx)(λv) for all 0 < v < η.
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Proof. Since F is locally formative at p, there exists a neighbourhood N of p
invariant under F . Let λ2 be its minor eigenvalue. For any x = (u0, v0) ∈ N in
natural coordinates, we have F (x) = (λ1u0, λ2v0) ∈ N . Hence for v so small that
(tx(v), v) ∈ N then λ2v ∈ Dtx if v ∈ Dtx .

Definition 6.3. Let G(tx) denote the complement of D(tx) on (0, 1]. Since D(tx)
is compact and disconnected, G(tx) is the countable union of disjoint open intervals,
the gaps between the projected fractal dust.

Definition 6.4. For ε > 0, by the relative ε-gaps of trajectory tx, we mean the
set Gε(tx) = {(a, b) ∈ G(tx) : b − a = aε}. Let Gε(tx) =

⋃
η>εGη(tx) be the set of

all gaps of relative size e or larger.

Due to local invertibility, cf. theorem 2.11, in the vicinity of a fixed point, gaps are
transported by a trajectory map F in the same way as points. In particular, there is
a dual theory of orbits for gaps just as for points in that a gap along a trajectory is
mapped into another gap along the same trajectory by F .

Proposition 6.5. For at least one e, Ge is infinite.

Proof. Let (a, b) be a gap within the neighbourhood of invertibility and let e be
such that (a, b) ∈ Ge. If λ is a multiplicative period, then for the gap (a′, b′) where
a′ = λa and b′ = λb,

b′ − a′ = λ(b− a) = λaε = εa′ (6.1)
and hence belongs to Ge. By trivial induction, Ge is infinite for e.

Definition 6.6. Let λ be an asymptotic multiplicative period at p, an e-gap
family started by g = (a, b) is a subset of Ge each member gk = (ak, bk) of which is
given by gk = λkg, i.e. ak = λka and bk = λkb. Note that for a given e, the terms of
Ge need not stem from a single gap family, instead there may be two or even more
families represented in Ge.

At this point one can calculate the multiplicative period, or contraction factor, λ
given an infinite e-gap family Ge. First order the gaps by size, say g1, g2, . . .. Now
form a triangular matrix whose ijth entry, for i > j, is the ordered pair (gi, gj).
Traverse the table, say along lower left to upper right diagonals, and for each entry
(gi, gj) in the table calculate

λ = bj/bi.

We term such a quotient a candidate multiplicative period if and only if also

(bj − aj)/(bi − ai) = λ.

Definition 6.7. By the spectrum Λx on the trajectory tx we mean the set of all
candidate multiplicative periods λ such that λk is also a candidate multiplicative
period for k = 2, 3, . . ..

Proposition 6.8. Let F have minor eigenvalue λ2 and be locally invariant on the
neighbourhood N of p. Then for every x ∈ A ∩ N , some root, n

√
λ2, n = 1, 2, . . .,

belongs to Λx. Hence λ2 also belongs to Λx for all such x.

Proof. By the uniqueness theorem 5.15, there can be only one multiplicative period
at each p. On the other hand, by ‘chance,’ on any one trajectory there can be points
of the attractor which give rise to arbitrary roots of periods (see the cantorrows
attractor, figure 15).
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(b ) Locally formative map determination by case
Let p be an extreme point of A. By the springbar analysis of §5 applied at p,

we form a preliminary determination of the spectral type of the locally formative
map F at p, the possibilities are: (a) similitude or false similitude, (b) differential
contraction, or (c) GM-1. With the exception of the false similitude case, the results
enable the calculation of true trajectories tx for each point x ∈ A. In the false
similitude case the trajectories are wrongly assumed to be rays.

In this section we examine the spectral families case by case and show how to
make a complete determination of the locally formative map in each case.

This section is organized according to springbar type, rays, exponential trajecto-
ries, and harmonic trajectories. From table 1 of §3, rays occur in the non-rotational
similitude, alternating-similitude, and false-similitude cases. Exponential trajecto-
ries occur in the exponential and alternating exponential cases. Recall that through
positive refinements, we may assume that the alternating cases do not occur.

(i) Non-rotational similitude: λ2 = λ1

In this case the locally formative map F is exactly λI and has only the one
unknown parameter λ. Note that every direction is an eigendirection. When F is only
locally formative, a given trajectory tx either eventually intersects a deleted tile of p
or eventually intersects the attractor only at p itself. Therefore by proposition 6.8,
every non-empty spectrum will contain the multiplicative period corresponding to
the locally formative map F . We summarize this as follows.

Theorem 6.9. In the case when λ2 = λ1 (non-rotational similitude) their com-
mon value λ is given by

λ = max
⋂
x

Λx,

where x is taken over the domain of invariance of F .

(ii) Exponential: λ1 > λ2 > 0
As noted in §5 c (ii) there are four subcases here depending on the relationship

between the eigenmanifolds and the limbs of the convex hull at p: (a) neither coincide
with the boundary, (b) `1 lies on ∂C(A) but `2 does not, (c) `2 lies on ∂C(A) but `1
does not, or (d) both coincide with the boundary (false similitude case). In the first
three cases, either the forward, the backward or both supporting trajectories will be
exponential curves.

It follows from theorem 5.12 of §5 c (iii) that in these three subcases, either the
forward, the backward, or both springbar graphs will correctly identify this case and,
by corollary 5.13 of §5 c (iii), allow the calculation of trajectory maps. The solution
now proceeds similar to that of the non-rotational similitude case treated in §6 b (i)
above. We summarize this as follows.

Theorem 6.10. In subcases (a), (b), and (c) of the exponential case, the minor
eigenvalue λ2 is given by

λ2 = max
⋂
x

Λx

with the intersection taken over all x in the domain of invariance of F . Then the
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major eigenvalue is given by

λ1 = λ1−ρ
2 ,

where ρ is calculated from corollary 5.13.

(iii) False similitude, eigendirections coincide with ∂CA
In this case the springbar analysis has a similitude signature and therefore the gap

analysis proceeds as if trajectories are rays. It can be shown by example that (a) both
a differential contraction with its eigendirections lying along the limbs of the convex
hull and a similitude can be invariant maps at an extreme point (see the twodcantor
attractor, figure 16), and (b) that in addition, the similitude can be incomplete in
a way we make precise with the concept of residues (see the cantorrows attractor
figure 15).

Definition 6.11. Let w be an attractor invariant map. We call the set A−w(A)
the residue of w. If the fixed point p of w is also a limit point of its residue, then we
say the residue is asymptotic for w.

In the false similitude case there are three possibilities: either a similitude or a
differential contraction can serve as the solution map at p, or only a differential
contraction will serve, no similitude is locally invariant at p, or finally a similitude
is invariant at p but leaves an asymptotic residue.

In the first case our gap analysis will find the similitude solution as usual and
there will be no asymptotic residue.

In the second case, the gap analysis will fail in that the intersection of spectra
over all rays will be empty, i.e. no similitude is invariant at p. Consequently it can
be inferred that this is a differential contraction with the eigendirections known
(namely being the limbs of the convex hull). It remains to determine the eigenvalues,
i.e. contraction factors along the eigendirections. Without knowing these values it
is not possible to construct a trajectory map and hence the only spectra available
are the two for the eigendirections. Let Λf and Λb be these spectra for the forward
and backward limbs respectively. On the other hand, these spectra will contain the
desired contraction factors. Letting νf denote the supremum of Λf , we know that
the corresponding eigenvalue λf is some power of νf , i.e. λf = νnf

f for some integral
nf > 0. Similarly for the other contraction factor, λb = νnb

b for some integral nb > 0
where νb is the supremum of Λb.

Let n denote the multi-index (nf , nb). For a multi-index n, let Fn denote the
differential contraction with eigenvalues λf = νnf

f and λb = νnb
b and Ωn denote the

domain of invariance of Fn. Finally let

Σ = {(nf , nb) : Fn(Ωn) has no asymptotic residue }.

As noted above, Σ is not empty and every multi-index in Σ is a solution. The best
solution is the one for which the Jacobian detFn = λfλb is largest.

In the third case, similitudes can be invariant at p but all leave an asymptotic
residue. The solution here proceeds just as in the second case discussed above.

Theorem 6.12. In the false similitude case there exist contraction factors λf and
λb such that the locally invariant map w can be constructed.
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(iv) Geometrical multiplicity one
By theorem 5.14 the parameter b = γ/λ lnλ can be calculated from the springbar

analysis. Hence given a point x = (u0, v0) ∈ A, a = u0/v0 − b ln v0 can be calculated
and hence by (3.9) the trajectory through x found. As in the other cases, project its
trace onto the minor natural coordinate axis. By equation (3.8) this fractal dust is
multiplicatively periodic as in the other cases. Now use the gap analysis as before to
calculate the spectrum Λx. Then

λ = max
⋂
x∈A

Λx.

Now knowing λ, γ is given by
γ = bλ lnλ

and the case solved.

Theorem 6.13. The GM-1 case can be solved as detailed above.

7. Encoding image tiles

Given an extreme point p, by the techniques of §4 and §5, its locally formative
map f can be calculated. As in §5, if the domain of invariance of f is not the entire
attractor, then f is not a generating map. This possibility is the subject of the present
section. Also we treat the encoding of the maps corresponding to interior tiles.

We develop in this section a technique for calculating invariant affine maps carrying
a given primary extreme point to a given secondary one all the while preserving
eigendirections and supporting trajectories. Of course any such map can be included
in an IFS for A. But a solution must also leave no asymptotic residue as well. Only
if the primary/secondary pair are correctly matched will such a map be a solution
for the secondary point (see below). Hence it may be necessary to exhausitively
test for correct matches. This will always succeed since there are at most finitely
many primary extreme points (and we are assuming A is an IFS attractor). Note
that decorative maps, unlike formative ones (cf. theorem 3.1), can be rotational
similitudes.

(a ) Encoding secondary tiles
As in §2, let p = w(q) where q is a primary extreme point and w is a decorative

globally invariant map for A; our goal in this section is to calculate w. Assume f is
the formative map for q, q = f(q). Then a locally invariant map h for p is given
by h = wfw−1. (We invoke here our rank two assumption on the attractor so that
w−1 always exists.) Our next theorem is well known and notes that the spectral
characteristics of f and h are identical.

Theorem 7.1. Let h, f , and w be as above, and let H, F , and W be their linear
parts respectively. Then H and F have identical eigenvalues. Furthermore x is an
eigenvector of F if and only if Wx is an eigenvector of H.

By this theorem, the candidate primary extreme points of which p is the image
must have identical spectra to that at p. If more than one primary extreme point
qualifies, then the technique below can be applied to each yielding at least one
decorative map w as a solution. Hence assume the primary extreme point q is to be
mapped by a decorative map w to the secondary extreme point p.
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In addition to the correspondence of eigendirections, there is a correspondence of
supporting trajectories.

Theorem 7.2. Let w ∈ W be the decorative map at p for A = A(W). If t∗ is a
supporting trajectory at the pre-image q of p, then w(t∗) is a supporting trajectory
at p.

Proof. Obviously w(t∗) has a complete trace at p. Since affine maps preserve order,
no image of a complete trace at q lies beyond that of w(t∗). It follows that if there
is a complete trace at p beyond that of w(t∗), it must belong to different tile than p
but have p as a limit point. But this is impossible since tiles are closed and disjoint.

Hence supporting trajectories go into supporting trajactories under decorative
maps. Nevertheless the different spectral cases of the formative maps require different
treatments.

(i) Differential contraction case
In all three spectral cases we seek the six affine parameters defining a decorative

map w. We will use the condition that the primary point q must map to the secondary
extreme point p to solve for the translational part of w. Hence the problem is reduced
to finding the four elements of the linear part W .

In the differential contraction case we have distinct eigenvalues and eigenvectors
to work with, and since by theorem 7.1 these must correspond between the primary
and its secondary, the problem is reduced to two parameters. This may be seen as
follows. Using the eigenvectors in both the domain and range of w as bases, its linear
part diagonalizes to a matrix of the form

Λ =
(
g 0
0 h

)
,

where the parameters g and h stem from the as yet unknown contractions along the
eigendirections.

Additionally from theorem 7.2 we know that the supporting trajectories must
correspond. Let u = u0λ

t
1, v = v0λ

t
2 and r = r0λ

τ
1 , s = s0λ

τ
2 be the forward sup-

porting trajectories at the primary and secondary extreme points respectively. In
these equations t and τ are the independent variables, u, v, r, and s are the natural
coordinate dependent variables and all other parameters are known. Mapping the
primary trajectory by Λ gives ( r s )T = Λ (u v )T or

r0λ
τ
1 = gu0λ

t
1 and s0λ

τ
2 = hv0λ

t
2, (7.1)

which holds in the sense that for each t there exists a τ for which both equations
hold. In particular this is true for t = 0 with some corresponding value τ0; that is

r0λ
τ0
1 = u0g and s0λ

τ0
2 = v0h.

A similar calculation can be made for the backward supporting trajectory; however,
the resulting equation is not independent. Thus we are left with three unknowns but
only two equations. Next we show how to calculate one of g or h directly. It follows
that the other may be found from (7.1) and the required map solved.

Given g > 0 the decorative map, say wg, will be completely determined. We define
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H(g) to be the one-sided Hausdorff set distance from wg(A) to A, that is

H(g) = sup
b∈wg(A)

inf
a∈A
‖a− b‖2

(see Shonkwiler 1989).
Evidently H(g) is zero if and only if wg(A) ⊂ A, that is if and only if wg is invariant

for that particular choice of g. Denote the set of such values by G,

G = H−1(0). (7.2)

Since wg is invertible, the set of such points g has no limit point other than the
origin.

It remains to satisfy the residue property. If the primary and secondary are cor-
rectly matched, then one or more values of g ∈ G will not have an asymptotic residue.
To select out these values, we form the one-sided Hausdorff distance Hg from the
w−1
g (A ∩ wg(CA)) to A, where as usual CA is the convex hull of A,

Hg = sup
b∈w−1

g (A∩wg(CA))
inf
a∈A
‖a− b‖2.

As above, this is zero if and only if w−1
g (A ∩ wg(CA)) ⊂ A, implying wg leaves no

asymptotic residue.

Remarks 7.11. The solution found by the above will not necessarily be the optimal
one in terms of having the largest tile.

(ii) GM-1: harmonic case
This goes just as above. Using natural coordinates reduces the problem to solv-

ing for the diagonal matrix Λ. Matching harmonic supporting trajectories between
primary and secondary extreme points reduces the problem to finding one of g or
h directly, that is, h becomes a function of g. And one of these, say g, may be de-
termined by assuring both invariance, wg(A) ⊂ A, and an absence of asymptotic
residue, w−1

g (A ∩ wg(CA)) ⊂ A.

(iii) Similitude case
Unfortunately here all rays are eigendirections and consequently there will be no

equation stemming from their correspondence. However, using supporting trajecto-
ries as the basis for natural coordinates, as we have (cf. §3 c), reduces the problem
to solving the diagonal matrix Λ as before.

Before showing how to find suitable values for g and h, note that it will not be
known in advance to which secondary supporting trajectory, forward or backward,
the forward supporting primary trajectory will map. Hence the following procedure
might have to be applied to both possibilities.

As above, to each pair of values (g, h) there will correspond a decorative map,
w(g,h), which preserves supporting trajectories. Define again the one-sided Hausdorff
distance, H(g, h), from w(g,h)(A) to A, that is

H(g, h) = sup
b∈w(g,h)(A)

inf
a∈A
‖a− b‖2.

Evidently H(g, h) is zero if and only if w(g,h)(A) ⊂ A, that is if and only if w(g,h)
is invariant for that particular choice of g and h. Since w(g,h) is invertible, the set
of such pairs has no limit point other than the origin. As above, let G = H−1(0).
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Again assuming there is a solution for the chosen primary and secondary extreme
points, the set of all pairs (g, h) ∈ G for which the one-sided Hausdorff distance H
from w−1

(g,h)(A ∩ w(g,h)(CA)) to A is zero is non-empty and any such pair constitutes
a solution. The pair with largest product, gh, is the optimal pair to use as it has the
largest Jacobian.

Theorem 7.3. Using the procedure described above of matching primary and
secondary extreme points, corresponding eigendirections, corresponding forward or
backward supporting trajectories and chosing the parameter g (or the parameters g
and h) so that both one-sided Hausdorff distances H and H are zero calculates a
decorative map w which tiles the secondary extreme point.

(iv) False similitude case
Of course if a false similitude primary extreme point is mapped by some decorative

map of an IFS to a secondary extreme point, then that secondary extreme point will
react to the springbar and gap tests just as primary does. And of course its locally
formative solution follows in the same way. Therefore, as above, the match of spectral
signatures identifies corresponding extreme points.

Solving the secondary extreme point proceeds exactly as in the similitude case,
matching supporting trajectories, and in the final stage, insuring the map be invariant
and leaving no asymptotic residue. There are no special problems here.

(b ) Encoding interior tiles
(i) One-dimensional solution

The main problem is finding the interior points at which to apply the gap analysis.
We will use the gaps themselves for this.†

Theorem 7.4. Let x be an end point of any gap. Then x is the fixed point of
some invertible locally formative map.

Proof. If CA is the convex hull of A, then

A =
⋂
k→∞

⋃
i1,...,ik

wi1 . . . wik(CA) (7.3)

and hence the set of gaps are given by⋃
k→∞

⋂
i1,...,ik

[wi1 . . . wik(CA)]c

in which the intersections are over open intervals. Each resulting intersection is a
gap,

g =
⋂

i1,...,ik

[wi1 . . . wik(CA)]c

any endpoint x of which is an endpoint of one of the sets wi1 . . . wik(CA). But this
composition is the required locally formative map of the theorem, or possibly with
further refinement to yield a smaller but strongly disjoint tile.

Corollary 7.5. Any point a ∈ A which is not a two-sided limit point of A, is the
image of an extreme point of A and conversely.

† The authors thank George Donovan for his discussion of this point leading to the idea.
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It has already been noted that the gaps in an attractor (with at least two generating
IFS maps) are countable and may be well ordered by length. Since the sets wi(A), are
disjoint compact sets for some IFS W for A, it follows that there exists a minimum
distance δ > 0 between them, cf. proposition 2.4. Now consider the end-points of
gaps of length δ or larger. That is, candidate points for the gap analysis in solving
interior tiles are the end points of the gaps g as above for which length g > δ, a finite
set, cf. theorem 2.11.

At any point in the solution process, the points of A can be classified into two sets
U and R, unresolved and resolved respectively. One might say the points in R are
‘coloured’. A point r of the latter are images r = w(a) of some point a ∈ A under
some map w determined by the solution process so far. The solution process is done
when all points of A are coloured.

Remarks 7.12. By using the refinement theorem and by simplfying to positive
refinements, cf. §4 a (i), our ultimate solution will not be the minimal one in terms
of number of maps. However, with these two exceptions, our other solution techniques
produce the largest map (in terms of eigenvalue) invariant for the attractor at every
step.

Of course the largest gap will occur between tiles in any IFS. However, subsequent
gaps in the well-ordered list may occur inside tiles. The gap analysis applied to one
of these will calculate a subtile that may eventually be discarded.

Theorem 7.6. Given a disjoint one-dimensional attractor A, the gap solution
procedure as detailed above constructs an IFS in finitely many steps whose attractor
is A.

Proof. By the refinement theorem, each extreme point is primary or the image of
a primary extreme point and hence is solvable by one map. From above, each interior
tile is solvable in a finite number of steps by application of theorem 7.4.

(ii) Two-dimensional solution

Proposition 7.7. The affine image of a convex polygon is a convex polygon.

Proof. This is an easy observation from the fact that an affine map takes half-
spaces into half-spaces.

Proposition 7.8. The finite disjoint union of convex polygons is polyhulled.

Proof. This is an elementary observation.

Definition 7.9. For a given PHD attractor A let Ω denote the collection of all
pairs (γ, ε) where γ is a simple closed curve lying in Ac and ε = dist(γ,A).

Consider the relation (γ1, ε1) ≡ (γ2, ε2) if and only if γ1 is homotopically equivalent
to γ2 within Ac. Clearly this is an equivalence relation on Ω and hence divides it
into equivalence classes. We exclude from further consideration the null-homotopic
curves. For each such equivalence class, Γ , let εΓ = max{ε : (γ, ε) ∈ Γ}. The set of
maximum epsilons is countable and of course is naturally ordered large to small. In
case of ties, and there can be only finitely many ties, any order will suffice.

Theorem 7.10. LetW be an IFS for A. The portion of A inside any closed curve
as above is the union of tiles of some refinement of W.

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1054 A. Deliu, J. Geronimo and R. Shonkwiler

Figure 7. Shrub. Figure 8. Black spleenwort fern.

Figure 9. Dragon fractal.

Proof. As k → ∞ the diameter of the tiles of the power refinement Wk tend to
zero. By proposition 2.4 there is a minimum distance δ > 0 separating tiles of the
disjoint IFS W. Thus for k sufficiently large so that tile diameter is less than δ it
will be that only complete tiles of Wk will lie inside a given closed curve.

Corollary 7.11. The extreme points of the portion of A inside any closed curve
as in the theorem are images of extreme points of A under some affine map.
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Figure 10. Dragontails.

Proof. By propositions 7.7 and 7.8, the convex hull of such a restriction sub-
attractor is polyhulled and by the theorem, its extreme points belong to affine images
of tiles of A. But the extreme point of an affine image of a tile, must be the image
of an extreme point of the tile.

Now solve interior tiles as follows. If the solution of all extreme points leaves
no residue, then we are done. Otherwise for each equivalence class Γ starting with
the largest max epsilon, solve all the extreme points of the Γ -deleted attractor,
namely A∩Γ 0 the interior of any γ ∈ Γ . The solution for the extreme points of this
deleted attractor will solve just as secondary extreme points. In finitely many steps,
proceeding from large to small max epsilon, the colouring will become complete and
the attractor solved.

Theorem 7.12. Given a disjoint two-dimensional attractor A, the solution pro-
cedure as detailed above constructs an IFS in finitely many steps whose attractor is
A.

Proof. This summarizes the entire algorithm as presented in the foregoing several
sections.

8. Limits of PHD attractors

Many simple IFS fractals are not polyhulled disjoint, for example the 3-map pine
of figure 11 and the well-known Sierpinski gasket. Nevertheless these and other just
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Figure 11. 3-map pine.

Figure 12. Flame.

touching attractors can be solved by our foregoing technique by realizing them as
limits of PHD attractors. Also the same holds for attractors due to IFSs having
singular maps.

Theorem 8.1. Let Wn = {w(n)
1 , . . . , w

(n)
r }∞1 be a sequence of iterated function

systems each having r affine maps. By stringing out the 6r parameters of these
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Figure 13. Gasketflip.

Figure 14. Gasketmod.

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1058 A. Deliu, J. Geronimo and R. Shonkwiler

Figure 15. Cantorrows.

Figure 16. Twodcantor.
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maps, each Wn may be identified with a point, vn, in 6r-dimensional Euclidean
space. Suppose vn → v as n → ∞ and W is the IFS identified with v. Then the
sequence of contraction factors sn of the Wn converges to s, the contraction factor
of W. Further, if s < 1, then the sequence of attractors An of the Wn converges to
the attractor A of W.

Proof. See Barnsley (1988).

Theorem 8.2. Let {Ai} be a sequence of PHD attractors each having an n-map
IFS Wi = {wi1, wi2, . . . , win} whose tiles {wik(Ai)}∞i=1 converge in the Hausdorff
metric on compact subsets of X for k = 1, . . . , n. If the number of their extreme
points is bounded, card(ext(Ai)) < M for all i, and their contraction factors si are
bounded away from 1, then:

(1) the sequence {Ai} converges to a set A, whose convex hull is polygonal, and
(2) the sequence of maps {wik}∞i=1 converges to an affine map w·k, k = 1, . . . , n,

and the set W = {w·1, w·2, . . . , w·n} is an IFS for A.

Proof. Let Aik = wik(Ai) be the tiles ofWi and let A·k be their limit as i→∞ for
k = 1, . . . , n. Let A =

⋃∞
k=1A·k. We show A = limi→∞Ai in the Hausdorff metric.

From the fact that

H(Ai, Aj) 6 max
k=1,...,n

{H(Aik, Ajk)}

(see Barnsley 1988) it follows that {Ai} is a Cauchy sequence and converges, say to
A. First assume A is not flat.

Next we show that the affine images {wik(A)}∞i=1 converge for each k = 1, . . . , n
from which it follows that the affine maps {wik}∞i=1 do likewise. But

H(wik(A), wjk(A)) 6 H(wik(A), wik(Ai))

+H(wik(Ai), wjk(Aj)) +H(wjk(Aj), wjk(A)).

For i and j large, the first term is small because the sets Ai and A are close together.
The same goes for the last term. The middle term is small by the hypothesis that
the tiles form a convergent sequence. Therefore the sequence {wik}i converges as an
affine map, k = 1, . . . , n. But since two-dimensional affine maps can be identified
as points in six-dimensional Euclidean space, this sequence of points converges, say
to the (identified) affine map w·k, k = 1, . . . , n. Further, by holding i fixed in the
inequality above and letting j →∞ we see that

w·k(A) = lim
i→∞

wik(A) = A·k.

It follows that, if the sequence of contraction factors si remains bounded away from
1, then A is an attractor with IFS {w·k}nk=1.

Now suppose A is flat. We may assume without loss of generality that it lies
along the x-axis. As above, the images wik(A) converge as i → ∞, but this no
longer implies the maps wik do. However, they will converge in their parameters
corresponding to the x-axis, namely the first column of the matrix part and the
first term of the translation part. As we noted previously for flat attractors, their
parameters corresponding to the y-axis can be arbitrary. Hence the argument above
applies in this case too.

To show that A is polygonal, let {Eij}jij=1, denote the extreme points of Ai, for
i = 1, 2, . . .. We may assume without loss of generality that j1 = maxi>1 ji = M . By
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Table 2.

symmetric part fixed point
name figure a b c rotation x y remarks

shrub 7 0.6 0 0.667 0 0.5 1 not disjoint,
0.333 0 0.5 −30 0.68 0.53 but all
0.333 0 0.5 30 0.22 0.8 tiles
0.6 0 0.667 0 0.5 0 exposed

black 8 0.85 0.0002 0.84 −2.7 0.72 0.82 not polyhulled
spleenwort 0.3 0 0.3 55 0.46 0.124
fern 0.3 0 0.36 −55 0.52 0.0.06

dragon 9 0.707 0 0.707 −45 0.625 0.625 just touching
0.707 0 0.707 −45 0.375 0.375 attractor

dragontails 10 0.5 0 0.5 90 0.4 0.2 no primary
0.5 0 0.5 90 0.8 0.4 point
0.5 0 −0.5 90 0.333 0.667

3-map pine 11 −0.9 0 0.9 0 0.5 0.98 alternating
0.3 0 0.36 −55 0.52 0.06 similitude

0.0002 0 0.16 0 0.5 0

flame 12 0.335 −0.112 0.783 −26.6 0.5 1 exponential
0.333 0 0.333 0 1 0.5 and
0.333 0 0.333 0 0 0.5 harmonic
0.333 0 0.667 −15 0.5 0.25 trajectories

gasketflip 13 0.5 0 0.5 0 0 0 multiple
0.5 0 0.5 0 0 1 extreme points
−0.5 0 0.5 0 0.667 0.5 per tile

gasketmod 14 0.5 0 0.5 0 0.5 1 not
0.5 0 0.5 0 0 0 strongly
0.5 0 0.5 0 1 0 disjoint
−0.125 0 −0.125 0 0.5 0.639

cantorrows 15 0.333 0 0.111 0 0 0 similitude
0.333 0 0 0 0 1 invariant
0.333 0 0 0 1 1 but
0.333 0 0 0 1 0 residue
0.333 0 0 0 0 0.333 asymptotic

twodcantor 16 0.333 0 0.333 0 0 0 differential
0.333 0 0.333 0 0 1 contraction
0.333 0 0.333 0 1 0 or similitude
0.333 0 0.333 0 1 1 solve
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using a standard diagonalization argument and considering subsequences if necessary
we may assume without loss of generality that ji is constant for i sufficiently large,
say equal to J , and the points Eij converge to Ej , j = 1, . . . , J , say, as i → ∞.
By considering convex combinations (which are linear) and noting continuity of this
representation, we see that the {Ej}J1 contain the extreme points of the limit set
A = limiAi.

(a ) Examples
Let

Wε =
( 1

2 − ε 0
0 1

2 − ε
)
.

The 3-map IFS

w1(ε) = Wε, w2(ε) = Wε +
(

1
2 + ε

0

)
, w3(ε) =Wε +

( 1
4 + 1

2ε
1
2 + ε

)
tends to the Sierpinski gasket as ε→ 0+.

The 4-map IFS consisting of w1(ε), w2(ε) from above and

wa(ε) = Wε +
(

0
1
2 + ε

)
, wb(ε) = Wε +

( 1
2 + ε
1
2 + ε

)
tends to the solid square.
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